Gluconeogenesis is the endogenous production of glucose in the body, especially in the liver primarily from lactic acid, glycerol, and the amino acids alanine and glutamine. When glucose availability drops further, the endogenous production of glucose is not able to keep up with the needs of the body and ketogenesis begins in order to provide an alternate source of energy in the form of ketone bodies. Ketone bodies replace glucose as a primary source of energy. During ketogenesis due to low blood glucose feedback, stimulus for insulin secretion is also low, which sharply reduces the stimulus for fat and glucose storage. Other hormonal changes may contribute to the increased breakdown of fats that result in fatty acids. Fatty acids are metabolized to acetoacetate which is later converted to beta-hydroxybutyrate and acetone. These are the basic ketone bodies that accumulate in the body as a ketogenic diet is sustained. This metabolic state is referred to as "nutritional ketosis." As long as the body is deprived of carbohydrates, metabolism remains in the ketotic state. The nutritional ketosis state is considered quite safe, as ketone bodies are produced in small concentrations without any alterations in blood pH. It greatly differs from ketoacidosis, a life-threatening condition where ketone bodies are produced in extremely larger concentrations, altering blood ph to acidotic a state.
Team work, a judicious and an appropriate selection of a surgically and medically fit patient are essential factors resulting in an overall reduction in the duration of the surgery to within three hours [Figure 17]. When a large volume liposuction is planned for an obese patient, it is advisable to stage this procedure in 2 to 3 session. It is preferable to perform liposuction on either front of the torso in supine position or the back in prone position. This avoids the need to change the position, or turning the patient over, half way through the operation, thereby taking additional time. This also reduces the patients' exposure to the rigorous physiological demands of this procedure.
The brain is composed of a network of neurons that transmit signals by propagating nerve impulses. The propagation of this impulse from one neuron to another is typically controlled by neurotransmitters, though there are also electrical pathways between some neurons. Neurotransmitters can inhibit impulse firing (primarily done by γ-aminobutyric acid, or GABA) or they can excite the neuron into firing (primarily done by glutamate). A neuron that releases inhibitory neurotransmitters from its terminals is called an inhibitory neuron, while one that releases excitatory neurotransmitters is an excitatory neuron. When the normal balance between inhibition and excitation is significantly disrupted in all or part of the brain, a seizure can occur. The GABA system is an important target for anticonvulsant drugs, since seizures may be discouraged by increasing GABA synthesis, decreasing its breakdown, or enhancing its effect on neurons.[7]

The key sign of metabolic syndrome is central obesity, also known as visceral, male-pattern or apple-shaped adiposity. It is characterized by adipose tissue accumulation predominantly around the waist and trunk.[5] Other signs of metabolic syndrome include high blood pressure, decreased fasting serum HDL cholesterol, elevated fasting serum triglyceride level, impaired fasting glucose, insulin resistance, or prediabetes. Associated conditions include hyperuricemia; fatty liver (especially in concurrent obesity) progressing to nonalcoholic fatty liver disease; polycystic ovarian syndrome in women and erectile dysfunction in men; and acanthosis nigricans.

Large adiposity of the abdomen, arms, or inner thighs tends to have excess volume of fat whose weight overstretches the panniculus and results in a ptosis of the skin overlying the area. In these cases the need is to reduce the large fat volume to permit effective skin retraction and MALL effectively addresses the issue better as the amount of skin shrinkage after this procedure is remarkable and the clinical results are appreciable [Figures ​[Figures1010–11].
Metabolic syndrome promotes coronary heart disease through several mechanisms. It increases the thrombogenicity of circulating blood, in part by raising plasminogen activator type 1 and adipokine levels, and it causes endothelial dysfunction. [14] Metabolic syndrome may also increase cardiovascular risks by increasing arterial stiffness. [15] Additional mechanisms include oxidative stress, [16] which has been associated with numerous components of metabolic syndrome. [17]

Insulin resistance also may increase your risk for metabolic syndrome. Insulin resistance is a condition in which the body can’t use its insulin properly. Insulin is a hormone that helps move blood sugar into cells where it’s used for energy. Insulin resistance can lead to high blood sugar levels, and it’s closely linked to overweight and obesity. Genetics (ethnicity and family history) and older age are other factors that may play a role in causing metabolic syndrome.
×